Практическое использование результатов системного анализа. Системный анализ Практическое использование системного анализа

Софт

В силу того, что системный анализ направлен на решение любых проблем понятие системы должно быть очень общим, применимым к любым ситуациям. Выход видится в том, чтобы обозначить, перечислить, описать такие черты, свойства, особенности систем, которые, во-первых, присущи всем системам без исключения, независимо от их искусственного или естественного происхождения, материального или идеального воплощения; а во-вторых, из множества свойств были бы отобраны и включены в список по признаку их необходимости для построения и использования технологии системного анализа. Полученный список свойств можно назвать дескриптивным (описательным) определением системы.

Необходимы нам свойства системы естественно распадаются на три группы, по четыре свойства в каждой.

Статические свойства системы

Статическими свойствами назовем особенности конкретного состояния системы. Это как бы то, что можно разглядеть на мгновенной фотографии системы, то, чем обладает система в любой, но фиксированный момент времени.

Динамические свойства системы

Если рассмотреть состояние системы в другой, отличный от первого, момент времени, то мы вновь обнаружим все четыре статических свойства. Но если наложить эти две "фотографии" друг на друга, то обнаружится, что они отличаются в деталях: за время между двумя моментами наблюдения произошли какие-то изменения в системе и ее окружении. Такие изменения могут быть важными при работе с системой и, следовательно, должны быть отображены в описаниях системы и учтены в работе с нею. Особенности изменений со временем внутри системы и вне ее и именуются динамическими свойствами систем. Если статические свойства - это то, что можно увидеть на фотографии системы, то динамические-то, что обнаружится при просмотре кинофильма про систему. О любых изменениях мы имеем возможность говорить в терминах перемен в статических моделях системы. В этой связи различаются четыре динамических свойства.

Синтетические свойства системы

Этот термин обозначает обобщающие, собирательные, интегральные свойства, учитывающие сказанное раньше, но делающие упор на взаимодействия системы со средой, на целостность в самом общем понимании.

Из бесконечного числа свойств систем выделено двенадцать присущих всем системам. Они выделены по признаку их необходимости и достаточности для обоснования, построения и доступного изложения технологии прикладного системного анализа.

Но очень важно помнить, что каждая система отличается от всех других. Это проявляется, прежде всего, в том, что каждое из двенадцати общесистемных свойств в данной системе воплощается в индивидуальной форме, специфической для этой системы. Кроме того, помимо указанных общесистемных закономерностей, каждая система обладает и другими, присущими только ей свойствами.

Прикладной системный анализ нацелен на решение конкретной проблемы. Это выражается в том, что с помощью общесистемной методологии он технологически направлен на обнаружение и использование индивидуальных, часто уникальных особенностей данной проблемной ситуации.

Для облегчения такой работы можно употребить некоторые классификации систем , фиксирующие тот факт, что для разных систем следует использовать разные модели, разную технику, разные теории. Например, Р. Акофф и Д. Гарайедаги предложили различать системы по соотношению объективных и субъективных целей у частей целого: системы технические, человеко-машинные, социальные, экологические. Другая полезная классификация, по степени познанности систем и формализованности моделей, предложена У. Чеклендом: "жесткие" и "мягкие" системы и, соответственно, "жесткая" и "мягкая" методологии, обсужденные в гл. 1.

Итак, можно сказать, что системное видение мира состоит в том, чтобы, понимая его всеобщую системность, приступить к рассмотрению конкретной системы, уделяя основное внимание ее индивидуальным особенностям. Классики системного анализа сформулировали этот принцип афористически: "Думай глобально, действуй локально".

Тарасенко Ф. П. Прикладной системный анализ (наука и искусство решения проблем): Учебник. - Томск; Издательство Томского университета, 2004. ISBN 5-7511-1838-3. Фрагмент

3.2.1. Характеристика системного анализа как научной дисциплины

Проблема возрастающей трудности управления экономическими процессами, характерная для всех развитых стран, породила целый ряд научных дисциплин. Их цель - создание концепций, позволяющих объяснить сложные экономические явления; выработать конкретные методы и формы управления экономическими процессами. Для всего этого комплекса дисциплин характерно широкое использование метода моделирования, применение математического аппарата, заимствование понятий и методов точных и технических наук.

Одна из таких научно-прикладных дисциплин– системный анализ, основанный на системном подходе к рассмотрению изучаемых экономических объектов и явлений. Системный анализ – это научный, всесторонний подход к принятию решений. Вся проблема изучается в целом, определяются цели развития объекта управления и различные пути их реализации в свете возможных последствий. При этом возникает необходимость согласования работы различных частей объекта управления, отдельных исполнителей, с тем, чтобы направить их на достижение обшей цели.

Системный анализ - это совокупность определенных научных методов и практических приемов решения разнообразных проблем, возникающих во всех сферах целенаправленной деятельности общества, на основе системного подхода и представления объекта исследования в виде системы. Характерным для системного анализа является то, что поиск лучшего решения проблемы начинается с определения и упорядочения целей деятельности системы, при функционировании которой возникла данная проблема. При этом устанавливается соответствие между этими целями, возможными путями решения возникшей проблемы и потребными для этого ресурсами.

Системный анализ – это методология общей теории систем, заключающаяся в исследовании любых объектов посредством представления их в качестве систем, проведения их структуризации и последующего анализа. Общая теория систем – научная дисциплина, разрабатывающая методологические принципы исследования систем.

Системный анализ характеризуется упорядоченным, логически обоснованным подходом к исследованию проблем и использованию существующих методов их решения, которые могут быть разработаны в рамках других наук.

Целью системного анализа является выявление проблемы, ее причин, предсказание ее развития, выработка и обоснование рекомендаций по решению проблемы.

Объект системного анализа в теоретическом аспекте - это процесс подготовки и принятия решений; в прикладном аспекте - различные конкретные проблемы, возникающие при создании и функционировании систем.

Предмет системного анализа – полная и всесторонняя проверка различных вариантов действий с точки зрения количественного и качественного сопоставления затраченных ресурсов с получаемым эффектом.

В прикладном плане системный анализ вырабатывает рекомендации по созданию принципиально новых или усовершенствованных систем. Рекомендации по улучшению функционирования существующих систем касаются самых различных проблем, в частности ликвидации нежелательных ситуаций (например, ухудшение финансово-экономического положения предприятия), вызванных изменением как внешних по отношению к изучаемой системе факторов, так и внутренних.

Системный анализ имеет двойственную природу: с одной стороны, это теоретическое и прикладное научное направление, использующее в практических целях достижения многих других наук, как точных (математика), так и гуманитарных (экономика, социология), а с другой стороны, это искусство. В нем сочетаются объективные и субъективные аспекты, причем последние присущи как самому процессу системного анализа, так и процессу принятия решения на основе его данных.

Системному анализу присущи определенные принципы, логические элементы, определенная этапность и методы проведения.

Применение системного анализа в управленческой деятельности позволяет:

· определить и упорядочить элементы, цели, параметры, задачи, ресурсы и структуру организационных систем;

· выявить внутренние свойства организационных систем, определяющие их поведение;

· выделить и классифицировать связи между элементами ЛС;

· выявить нерешенные проблемы, узкие места, факторы неопределенности, влияющие на функционирование, возможные решения;

· формализовать слабоструктурированные проблемы, раскрыть их содержание и возможные последствия;

· выделить перечень и указать целесообразную последовательность выполнения задач функционирования организационных систем и отдельных ее элементов;

· разработать модели, характеризующие решаемую проблему со всех основных сторон и позволяющие «проигрывать» возможные варианты действий и т.п.

3.2.2. Основные понятия системного анализа

Система – множество элементов, находящихся в отношениях и связях друг с другом, образующих определенную целостность, единство. Элемент системы некоторый объект (материальный, энергетический, информационный), обладающий рядом важных свойств и реализующий в системе определенный закон функционирования , внутренняя структура которого не рассматривается.

Подсистема – часть системы, выделенная по определенному признаку, обладающая некоторой самостоятельностью и допускающая разложение на элементы в рамках данного рассмотрения. Связь – вид отношений между элементами, который проявляется как некоторый обмен, взаимодействие. Связи могут быть структурные, функциональные, пространственно-временные, каузальные (причинно-следственные), информационные.

На рис.3.1 представлен общий вид системы.

Рис.3.1. Система в общем виде

Первая часть любой системы – ее вход , который состоит из элементов, классифицируемых по их роли в процессах, протекающих в системе. Входной сигнал может быть разделен на три подмножества:

· неуправляемых входных сигналов , преобразуемых рассматриваемой системой;

· воздействий внешней среды , представляющих шум, помехи;

· управляющих сигналов (событий) , появление которых приводит к переводу элемента из одного состояния в другое.

Первый элемент входа - тот, над которым осуществляется некоторый процесс, или операция. Этот вход есть или будет «нагрузкой» системы (сырье, материалы, энергия, информация и др.).

Вторым элементом входа системы является внешняя (окружающая) среда, под которой понимается совокупность факторов и явлений, воздействующих на процессы системы и не поддающиеся прямому управлению со стороны ее руководителей. Не контролируемые системами факторы внешней среды обычно можно разбить на две категории: случайные, характеризуемые законами распределения, неизвестными законами или действующие без всяких законов (например, природные условия); факторы, находящиеся в распоряжении системы, являющейся внешней и активно действующей по отношению к рассматриваемой системе (например, законы, нормативно-правовые документы, целевые установки). Цели внешней системы могут быть известны, известны неточно, вовсе неизвестны.

Третий элемент входа обеспечивает размещение и перемещение компонентов системы, например различных инструкции, положений, приказов, то есть задает законы ее организации и функционирования, цели, ограничительные условия и др.

Вторая часть системы - это операции, процессы или каналы , через которые проходят элементы входа. Система должна быть устроена таким образом, чтобы необходимые процессы (производственные, подготовки кадров, материально-технического снабжения и др.) воздействовали по определенному закону на каждый вход, в соответствующее время для достижения желаемого выхода.

Третья часть системы - выход , являющийся продуктом или результатом ее деятельности. Система на своем выходе должна удовлетворять ряду критериев, важнейшие из которых - стабильность и надежность. По выходу судят о степени достижения целей, поставленных перед системой. Выходной сигнал представляется совокупностью характеристик системы .

Характеристика – то, что отражает некоторое свойство элемента системы, задается как <имя, область допустимых значений>. Некоторые авторы термином параметр называют только количественные характеристики, другие отождествляют понятия параметра и характеристики.

Законом функционирования , описывающим процесс функционирования элемента системы во времени, называется зависимость .

Оператор преобразует независимые переменные в зависимые и отражает поведение элемента (системы) во времени - процесс изменения состояния элемента (системы), оцениваемый по степени достижения цели его функционирования. Понятие поведения принято относить только к целенаправленным системам и оценивать по показателям.

Цель ситуация или область ситуаций, которая должна быть достигнута при функционировании системы за определенный промежуток времени. Цель может задаваться требованиями к показателям результативности, ресурсоемкости, оперативности функционирования системы либо к траектории достижения заданного результата. Как правило, цель для системы определяется старшей системой, а именно той, в которой рассматриваемая система является элементом.

Качество – совокупность существенных свойств объекта, обусловливающих его пригодность для использования по назначению.

Показатель – характеристика, отражающая качество системы или целевую направленность процесса. Состояние системы – множество значений характеристик системы в данный момент времени. Процесс – совокупность состояний системы, упорядоченных по изменению какого-либо параметра. Эффективность процесса – степень его приспособленности к достижению цели. Критерий эффективности – обобщенный показатель и правило выбора лучшей системы (лучшего решения), например, . Структура – совокупность образующих систему элементов и связей между ними. Ситуация – совокупность состояний системы и среды в один и тот же момент времени. Проблема – несоответствие между существующим и целевым состоянием системы при данном состоянии среды в рассматриваемый момент времени.

Открытые системы – это системы, которые обмениваются материально-информационными ресурсами или энергией с окружающей средой регулярным и понятным образом.

Закрытые системы действуют с относительно небольшим обменом энергией или материалами с окружающей средой, например химическая реакция, протекающая в герметически закрытом сосуде.

Системы можно классифицировать на равновесные , слабо равновесные и сильно неравновесные. Для социально-экономических систем состояние равновесия может наблюдаться на относительно коротком промежутке времени. Для слабо равновесных систем небольшие изменения внешней среды дают возможность системе в новых условиях достичь состояния нового равновесия. Сильно неравновесные системы, которые весьма чувствительны к внешним воздействиям, под влиянием внешних сигналов, даже небольших по величине, могут перестраиваться непредсказуемым образом.

По типу составных частей, входящих в систему, последние можно классифицировать на машинные (автомобиль, станок), типа «человек-машина » (самолет-пилот) и типа «человек-человек » (коллектив организации).

Одна из возможных классификаций систем приведена в табл.3.1.

Таблица 3.1

Классификация систем

Признак классификации

Вид систем

Сложность

Простая, сложная, большая

Изменение во времени

Статическая, динамическая

Взаимосвязь с окружающей средой

Закрытая, открытая

Предвидение развития

Детерминированная, стохастическая

Реакция на изменение окружающей среды

Адаптивная, неадаптивная

Устойчивость к возмущающим воздействиям

Равновесная, слабо равновесная, сильно неравновесная

По типу составных частей

Техническая, социо-техническая, социальная

Следует различать сложные и большие системы. Сложная система – система с разветвленной структурой и значительным количеством взаимосвязанных и взаимодействующих элементов (подсистем), имеющих разные по своему типу связи, способная сохранять частичную работоспособность при отказе отдельных элементов (свойство робастности ). Большая система – сложная система, имеющая ряд дополнительных признаков: наличие подсистем, имеющих собственное целевое назначение, подчиненное общему целевому назначению всей системы; большое число разнообразных связей (материальных, информационных, энергетических и т.п.); внешние связи с другими системами; наличие в системе элементов самоорганизации.

Важнейшими характерными чертами больших систем являются:

1) целенаправленность и управляемость системы, наличие у всей системы общей цели и назначения, задаваемых и корректируемых в системах более высоких уровней;

2) сложная иерархическая структура организации системы, предусматривающая сочетание централизованного управления с автономностью частей;

3) большой размер системы, то есть большое число частей и элементов, входов и выходов, разнообразие выполняемых функций и т.д.;

4) целостность и сложность поведения. Сложные, переплетающиеся взаимоотношения между переменными, включая петли обратной связи, приводят к тому, что изменение одной влечет изменение многих других переменных.

К большим системам относятся крупные производственно-экономические системы (например, холдинги), города, строительные и научно-исследовательские комплексы.

Справиться с задачами анализа больших сложных систем можно лишь тогда, когда в нашем распоряжении будет надлежащим образом организованная система исследования, элементы которой подчинены общей цели. Таково основное содержание закона необходимого разнообразия Эшби , из которого вытекает важная практическая рекомендация. Чтобы всесторонне изучить экономическую систему и уметь управлять ею, необходимо создать систему исследования, сравнимую по своей сложности с экономической; невозможно эффективно управлять большой системой с помощью простой системы управления, она требует сложного управляющего механизма. По мере роста сложности решаемых задач должна повышаться возможность системы управления решать эти задачи. Большие организации требуют сложных, многосторонних планов.

К числу понятий, на которых основаны важные принципы управления системами, относится понятие обратной связи (рис.3.2).

Рис.3.2. Обратная связь

Именно оно способствовало установлению принципиальных аналогий между организацией управления в таких качественно различных системах, как машины, живые организмы и коллективы людей. С помощью обратной связи сигнал (информация) с выхода системы (объекта управления) передается в орган управления. Здесь этот сигнал, содержащий информацию о работе, выполненной объектом управления, сравнивается с сигналом, задающим содержание и объем работы (например, план). В случае возникновения рассогласования между фактическим и плановым состоянием работы принимаются меры по его устранению.

Особенностью социально-экономических систем является то обстоятельство, что не всегда удается четко выразить обратные связи, которые в них, как правило, длинные, проходят через целый ряд промежуточных звеньев, и четкий их просмотр затруднен. Сами управляемые величины нередко не поддаются ясному определению, и трудно установить множество ограничений, накладываемых на параметры управляемых величин. Не всегда известны также действительные причины выхода управляемых переменных за установленные пределы.

В изменяющейся среде или под воздействием различных «возмущений», которые достигают порога устойчивости, система может прекратить существование, превращаться в другую систему или распадаться на составные элементы. Например, банкротство предприятий.

Способность системы оставаться устойчивой через изменения своей структуры и поведения называется ультрастабильностью . Так, многие современные, прежде всего крупные, компании обеспечивают высокий уровень своей стабильности за счет высокой приспособляемости к внешним и внутренним условиям своего функционирования. Такие компании своевременно прекращают одни направления своей деятельности и начинают другие, вовремя выходят на новые рынки и покидают бесперспективные.

Свойство – сторона объекта, обуславливающая его отличие от других объектов или сходство с ними и проявляющаяся при взаимодействии с другими объектами. При взаимодействии с внутренними элементами или с внешними объектами выделяют соответственно внутренние и внешние свойства. Одна из основных целей системного анализа – выявление внутренних свойств системы, определяющих ее поведение и являющихся причинами внешних свойств. По структуре свойства делят на простые и сложные (интегральные). Внешние простые свойства доступны непосредственному наблюдению, внутренние свойства конструируются в нашем сознании логически и не доступны наблюдению.

Существуют следующие четыре свойства, которыми должен обладать объект, чтобы его можно было считать системой.

1. Целостность и членимость . Системой является целостная совокупность элементов, взаимодействующих друг с другом, но в целях анализа система может быть условно разделена на отдельные элементы.

2. Связи – это то, что соединяет объекты и свойства в системном процессе в целое. Между элементами системы существуют связи, которые определяют интегративные качества системы. Связи между элементами системы должны быть более мощными, чем связи отдельных элементов с внешней средой.

3. Организация – это внутренняя упорядоченность, согласованность взаимодействия элементов системы, определенная структура связей между элементами системы.

4. Интегративные качества (эмерджентность, системный эффект, синергетический эффект) – качества, присущие системе в целом, но не свойственные ни одному из ее элементов в отдельности.

3.2.3. Принципы системного анализа

Системный анализ основывается на множестве принципов , т.е. положениях общего характера, обобщающих опыт работы человека со сложными системами.

К наиболее важным относятся следующие принципы.

Принцип конечной цели заключается в абсолютном приоритете глобальной цели и имеет следующие правила:

1) для проведения системного анализа необходимо в первую очередь сформулировать основную цель исследования;

2) анализ следует вести на базе уяснения основной цели исследуемой системы, что позволит определить ее основные свойства, показатели качества и критерии оценки;

3) при синтезе систем любую попытку изменения или совершенствования существующей системы надо оценивать относительно того, помогает или мешает она достижению конечной цели;

4) цель функционирования искусственной системы задается, как правило, системой, в которой исследуемая система является составной частью.

Принцип измерения . О качестве функционирования какой-либо системы можно судить только применительно к системе более высокого порядка. Другими словами, для определения эффективности функционирования системы надо представить ее как часть более общей и проводить оценку внешних свойств исследуемой системы относительно целей и задач суперсистемы.

Принцип единства . Это совместное рассмотрение системы как целого и как совокупности частей (элементов). Принцип ориентирован на «взгляд внутрь» системы, на расчленение ее с сохранением целостных представлений о системе.

Принцип связности . Рассмотрение любой части совместно с ее окружением подразумевает проведение процедуры выявления связей между элементами системы и выявление связей с внешней средой (учет внешней среды). В соответствии с этим принципом систему в первую очередь следует рассматривать как часть (элемент, подсистему) другой системы, называемой суперсистемой или старшей системой.

Принцип иерархии . Полезно введение иерархии частей и их ранжирование, что упрощает разработку системы и устанавливает порядок рассмотрения частей.

Принцип функциональности утверждает, что любая структура тесно связана с функцией системы и ее частей. В случае придания системе новых функций полезно пересматривать ее структуру, а не пытаться втиснуть новую функцию в старую схему. Поскольку выполняемые функции составляют процессы, то целесообразно рассматривать отдельно процессы, функции, структуры. В свою очередь, процессы сводятся к анализу потоков различных видов: материальный поток; поток энергии; поток информации; смена состояний. С этой точки зрения структура есть множество ограничений на потоки в пространстве и во времени.

Принцип развития . Это учет изменяемости системы, ее способности к развитию, адаптации, расширению, замене частей, накапливанию информации. В основу синтезируемой системы требуется закладывать возможность развития, наращивания, усовершенствования. Обычно расширение функций предусматривается за счет обеспечения возможности включения новых модулей, совместимых с уже имеющимися. С другой стороны, при анализе принцип развития ориентирует на необходимость учета предыстории развития системы и тенденций, имеющихся в настоящее время, для вскрытия закономерностей ее функционирования.

3.2.4. Структура системного анализа

На рис.3.3 представлен общий циклический подход к решению проблем. В процессе функционирования реальной системы выявляется проблема практики как несоответствие существующего положения дел требуемому. Для решения проблемы проводится системное исследование (декомпозиция, анализ и синтез) системы, снимающее проблему. В ходе синтеза осуществляется оценка анализируемой и синтезируемой систем. Реализация синтезированной системы в виде предлагаемой физической системы позволяет провести оценку степени снятия проблемы практики, и принять решение на функционирование модернизированной (новой) реальной системы.

Основными задачами системного анализа являются (табл.3.2):

· задача декомпозиции означает представление системы в виде подсистем, состоящих из более мелких элементов;

· задача анализа – нахождение различного рода свойств системы, ее элементов и окружающей среды с целью определения закономерностей поведения системы;

· задача синтеза – на основе полученных знаний о системе, создать модель системы, определить ее структуру, параметры, обеспечивающие эффективное функционирование системы, решение задач и достижение поставленных целей.

Рис.3.3. Общий подход к решению проблем с позиций системного анализа

Таблица 3.2

Основные задачи и функции системного анализа

Структура системного анализа

Декомпозиция

Анализ

Синтез

Определение и декомпозиция общей цели, основной функции

Функционально-структурный анализ

Разработка модели системы

Выделение системы из среды

Морфологический анализ (анализ взаимосвязи компонентов)

Структурный синтез

Описание воздействующих факторов

Генетический анализ (анализ предыстории, тенденций, прогнозирование)

Параметрический синтез

Описание тенденций развития, неопределенностей

Анализ аналогов

Оценивание системы

Описание как «черного ящика»

Анализ эффективности

Функциональная, компонентная и структурная декомпозиция

Формирование требований к создаваемой системе

На этапе декомпозиции , обеспечивающем общее представление системы, осуществляются:

1. Определение и декомпозиция общей цели исследования и основной функции системы как ограничение траектории в пространстве состояний системы или в области допустимых ситуаций. Наиболее часто декомпозиция проводится путем построения дерева целей и дерева функций.

2. Выделение системы из среды (разделение на систему/«несистему») по критерию участия каждого рассматриваемого элемента в процессе, приводящем к результату на основе рассмотрения системы как составной части надсистемы.

3. Описание воздействующих факторов.

4. Описание тенденций развития, неопределенностей разного рода.

5. Описание системы как «черного ящика».

6. Функциональная (по функциям), компонентная (по виду элементов) и структурная (по виду отношений между элементами) декомпозиции системы.

Глубина декомпозиции ограничивается. Декомпозиция должна прекращаться, если необходимо изменить уровень абстракции – представить элемент как подсистему. Если при декомпозиции выясняется, что модель начинает описывать внутренний алгоритм функционирования элемента вместо закона его функционирования в виде «черного ящика», то в этом случае произошло изменение уровня абстракции. Это означает выход за пределы цели исследования системы и, следовательно, вызывает прекращение декомпозиции.

В автоматизированных методиках типичной является декомпозиция модели на глубину 5-6 уровней. На такую глубину декомпозируется обычно одна из подсистем. Функции, которые требуют такого уровня детализации, часто очень важны, и их детальное описание дает ключ к секретам работы всей системы.

В общей теории систем доказано, что большинство систем могут быть декомпозированы на базовые представления подсистем. К ним относят: последовательное (каскадное) соединение элементов, параллельное соединение элементов, соединение с помощью обратной связи.

Проблема проведения декомпозиции состоит в том, что в сложных системах отсутствует однозначное соответствие между законом функционирования подсистем и алгоритмом, его реализующим. Поэтому осуществляется формирование нескольких ва­риантов (или одного варианта, если система отображена в виде иерархической структуры) декомпозиции системы.

Рассмотрим некоторые наиболее часто применяемые стратегии декомпозиции.

Функциональная декомпозиция . Декомпозиция базируется на анализе функций системы. При этом ставится вопрос что делает система, независимо от того, как она работает. Основанием разбиения на функциональные подсистемы служит общность функций, выполняемых группами элементов.

Декомпозиция по жизненному циклу . Признак выделения подсистем – изменение закона функционирования подсистем на разных этапах цикла существования системы «от рождения до гибели». Рекомендуется применять эту стратегию, когда целью системы является оптимизация процессов и когда можно определить последовательные стадии преобразования входов в выходы.

Декомпозиция по физическому процессу . Признак выделения подсистем – шаги выполнения алгоритма функционирования подсистемы, стадии смены состояний. Хотя эта стратегия полезна при описании существующих процессов, результатом ее часто может стать слишком последовательное описание системы, которое не будет в полной мере учитывать ограничения, диктуемые функциями друг другу. При этом может оказаться скрытой последовательность управления. Применять эту стратегию следует, только если целью модели является описание физического процесса как такового.

Декомпозиция по подсистемам (структурная декомпозиция). Признак выделения подсистем – сильная связь между элементами по одному из типов отношений (связей), существующих в системе (информационных, логических, иерархических, энергетических и т.п.). Силу связи, например, по информации можно оценить коэффициентом информационной взаимосвязи подсистем к = N / N o , где N – количество взаимоиспользуемых информационных массивов в подсистемах, N 0 - общее количество информационных массивов. Для описания всей системы должна быть построена составная модель, объединяющая все отдельные модели. Рекомендуется использовать разложение на подсистемы, только когда такое разделение на основные части системы не изменяется. Нестабильность границ подсистем быстро обесценит как отдельные модели, так и их объединение.

На этапе анализа , обеспечивающем формирование детального представления системы, осуществляются:

1. Функционально-структурный анализ существующей системы, позволяющий сформулировать требования к создаваемой системе. Он включает уточнение состава и законов функционирования элементов, алгоритмов функционирования и взаимовлияний подсистем, разделение управляемых и неуправляемых характеристик, задание пространства состояний Z, задание параметрического пространства Т, в котором задано поведение системы, анализ целостности системы, формулирование требований к создаваемой системе.

2. Морфологический анализ – анализ взаимосвязи компонентов.

3. Генетический анализ – анализ предыстории, причин развития ситуации, имеющихся тенденций, построение прогнозов.

4. Анализ аналогов.

5. Анализ эффективности (по результативности, ресурсоемкости, оперативности). Он включает выбор шкалы измерения, формирование показателей эффективности, обоснование и формирование критериев эффективности, непосредственно оценивание и анализ полученных оценок.

6. Формирование требований к создаваемой системе, включая выбор критериев оценки и ограничений.

Этап синтеза системы, решающей проблему, представлен в виде упрощенной функциональной диаграммы на рис.3.4.

Рис.3.4. Упрощенная функциональная диаграмма этапа синтеза системы, решающей проблему

На этом этапе осуществляются:

1. Разработка модели требуемой системы (выбор математического аппарата, моделирование, оценка модели по критериям адекватности, простоты, соответствия между точностью и сложностью, баланса погрешностей, многовариантности реализаций, блочности построения).

2. Синтез альтернативных структур системы, снимающей проблему.

3. Синтез параметров системы, снимающей проблему.

4. Оценивание вариантов синтезированной системы (обоснование схемы оценивания, реализация модели, проведение эксперимента по оценке, обработка результатов оценивания, анализ результатов, выбор наилучшего варианта).

Оценка степени снятия проблемы проводится при завершении системного анализа.

Наиболее сложными в исполнении являются этапы декомпозиции и анализа. Это связано с высокой степенью неопределенности, которую требуется преодолеть в ходе исследования. Рассмотрим процесс формирования общего и детального представления системы, включающий девять основных стадий.

Формирование общего представления системы

Стадия 1 . Выявление главных функций (свойств, целей, предназначения) системы. Формирование (выбор) основных предметных понятий, используемых в системе. На этой стадии речь идет об уяснении основных выходов в системе. Именно с этого лучше всего начинать ее исследование. Должен быть определен тип выхода: материальный, энергетический, информационный, они должны быть отнесены к каким-либо физическим или другим понятиям (выход производства – продукция (какая?), выход системы управления – командная информация (для чего? в каком виде?), выход автоматизированной информационной системы – сведения (о чем?) и т.д.).

Стадия 2 . Выявление основных функций и частей (модулей) в системе. Понимание единства этих частей в рамках системы. На этой стадии происходит первое знакомство с внутренним содержанием системы, выявляется, из каких крупных частей она состоит и какую роль каждая часть играет в системе. Это стадия получения первичных сведений о структуре и характере основных связей. Такие сведения следует представлять и изучать при помощи структурных или объектно-ориентированных методов анализа систем, где, например, выясняется наличие преимущественно последовательного или параллельного характера соединения частей, взаимной или преимущественно односторонней направленности воздействий между частями и т.п. Уже на этой стадии следует обратить внимание на так называемые системообразующие факторы, т.е. на те связи, взаимообусловленности, которые и делают систему системой.

Стадия 3. Выявление основных процессов в системе, их роли, условий осуществления; выявление стадийности, скачков, смен состояний в функционировании; в системах с управлением – выделение основных управляющих факторов. Здесь исследуется динамика важнейших изменений в системе, ход событий, вводятся параметры состояния, рассматриваются факторы, влияющие на эти параметры, обеспечивающие течение процессов, а также условия начала и конца процессов. Определяется, управляемы ли процессы и способствуют ли они осуществлению системой своих главных функций. Для управляемых систем уясняются основные управляющие воздействия, их тип, источник и степень влияния на систему.

Стадия 4 . Выявление основных элементов «несистемы», с которыми связана изучаемая система. Выявление характера этих связей. На этой стадии решается ряд отдельных проблем. Исследуются основные внешние воздействия на систему (входы). Определяются их тип (вещественные, энергетические, информационные), степень влияния на систему, основные характеристики. Фиксируются границы того, что считается системой, определяются элементы «несистемы», на которые направлены основные выходные воздействия. Здесь же полезно проследить эволюцию системы, путь ее формирования. Нередко именно это ведет к пониманию структуры и особенностей функционирования системы. В целом данная стадия позволяет лучше уяснить главные функции системы, ее зависимость и уязвимость или относительную независимость во внешней среде.

Стадия 5 . Выявление неопределенностей и случайностей в ситуации их определяющего влияния на систему (для стохастических систем).

Стадия 6. Выявление разветвленной структуры, иерархии, формирование представлений о системе как о совокупности модулей, связанных входами-выходами.

Стадией 6 заканчивается формирование общих представлений о системе. Как правило, этого достаточно, если речь идет об объекте, с которым мы непосредственно работать не будем. Если же речь идет о системе, которой надо заниматься для ее глубокого изучения, улучшения, управления, то нам придется пойти дальше по спиралеобразному пути углубленного исследования системы.

Формирование детального представления системы

Стадия 7 . Выявление всех элементов и связей, важных для целей рассмотрения. Их отнесение к структуре иерархии в системе. Ранжирование элементов и связей по их значимости.

Стадии 6 и 7 тесно связаны друг с другом, поэтому их обсуждение полезно провести вместе. Стадия 6 – это предел познания «внутрь» достаточно сложной системы для лица, оперирующего ею целиком. Более углубленные знания о системе (стадия 7) будет иметь уже только специалист, отвечающий за ее отдельные части. Для не слишком сложного объекта уровень стадии 7 – знание системы целиком – достижим и для одного человека. Таким образом, хотя суть стадий 6 и 7 одна и та же, но в первой из них мы ограничиваемся тем разумным объемом сведений, который доступен одному исследователю.

При углубленной детализации важно выделять именно существенные для рассмотрения элементы (модули) и связи, отбрасывая все то, что не представляет интереса для целей исследования. Познание системы предполагает не всегда только отделение су­щественного от несущественного, но также уделение дополнительного внимания более существенному. Детализация должна затронуть и уже рассмотренную в стадии 4 связь системы с «несистемой». На стадии 7 совокупность внешних связей считается проясненной настолько, что можно говорить о доскональном знании системы.

Стадии 6 и 7 подводят итог общему, цельному изучению системы. Дальнейшие стадии уже рассматривают только ее отдельные стороны. Поэтому важно еще раз обратить внимание на системообразующие факторы, на роль каждого элемента и каждой связи, на понимание, почему они именно таковы или должны быть именно таковыми в аспекте единства системы.

Стадия 8 . Учет изменений и неопределенностей в системе. Здесь исследуются медленное, обычно нежелательное изменение свойств системы, которое принято называть «старением», а также возможность замены отдельных частей (модулей) на новые, позволяющие не только противостоять старению, но и повысить качество системы по сравнению с первоначальным состоянием. Такое совершенствование искусственной системы принято называть развитием. К нему также относят улучшение характеристик модулей, подключение новых модулей, накопление информации для лучшего ее использования, а иногда и перестройку структуры, иерархии связей.

Основные неопределенности в стохастической системе считаются исследованными на стадии 5. Однако недетерминированность всегда присутствует и в системе, не предназначенной работать в условиях случайного характера входов и связей. Добавим, что учет неопределенностей в этом случае обычно превращается в исследование чувствительности важнейших свойств (выходов) системы. Под чувствительностью понимают степень влияния изменения входов на изменение выходов.

Стадия 9. Исследование функций и процессов в системе в целях управления ими. Введение управления и процедур принятия решения. Управляющие воздействия как системы управления. Для целенаправленных и других систем с управлением данная стадия имеет большое значение. Основные управляющие факторы были уяснены при рассмотрении стадии 3, но там это носило характер общей информации о системе. Для эффективного введения управлений или изучения их воздействий на функции системы и процессы в ней необходимо глубокое знание системы. Именно поэтому мы говорим об анализе управлений только сейчас, после всестороннего рассмотрения системы. Напомним, что управление может быть чрезвычайно разнообразным по содержанию – от команд специализированной управляющей ЭВМ до министерских приказов.

Однако возможность единообразного рассмотрения всех целенаправленных вмешательств в поведение системы позволяет говорить уже не об отдельных управленческих актах, а о системе управления, которая тесно переплетается с основной системой, но четко выделяется в функциональном отношении.

На данной стадии выясняется, где, когда и как (в каких точках системы, в какие моменты, в каких процессах, скачках, выборах из совокупности, логических переходах и т.д.) система управления воздействует на основную систему, насколько это эффективно, приемлемо и удобно реализуемо. При введении управлений в системе должны быть исследованы варианты перевода входов и постоянных параметров в управляемые, определе­ны допустимые пределы управления и способы их реализации.

Стадии 6-9 были посвящены углубленному исследованию системы. Далее идет специфическая стадия моделирования. О создании модели можно говорить только после полного изучения системы.

Введение ………………………………………………………………………………………... 3

1.1. Основные понятия теории систем и системного анализа ………………………………. 4

Раздел 2. Классификация систем в системном анализе

2.1. Классификация систем …………………………………………………………………… 9

Заключение …………………………………………………………………………………… 24

Список литературы …………………………………………………………………………... 25

Введение

метод познания, представляющий собой последовательность действий по установлению структурных связей между переменными или элементами исследуемой системы. Опирается на комплекс общенаучных, экспериментальных, естественнонаучных, статистических, математических методов. Системный анализ возник в эпоху разработки компьютерной техники. Успех его применения при решении сложных задач во многом определяется современными возможностями информационных технологий. Таким образом, системный анализ - это совокупность методов, основанных на использовании ЭВМ и ориентированных на исследование сложных систем - технических, экономических, экологических и т.д.

Целью системного анализа является полная и всесторонняя проверка различных вариантов действий с точки зрения количественного и качественного сопоставления затраченных ресурсов с получаемым эффектом.

Системный анализ предназначен для решения в первую очередь слабоструктуризованных проблем, т.е. проблем, состав элементов и взаимосвязей которых установлен только частично, задач, возникающих, как правило, в ситуациях, характеризуемых наличием фактора неопределенности и содержащих неформализуемые элементы, непереводимые на язык математики.

Системный анализ помогает ответственному за принятие решения лицу более строго подойти к оценке возможных вариантов действий и выбрать наилучший из них с учетом дополнительных, неформализуемых факторов и моментов, которые могут быть неизвестны специалистам, готовящим решение.

Актуальность темы состоит в том, что рассмотрение категорий системного анализа создает основу для логического и последовательного подхода к проблеме принятия решений. Эффективность решения проблем с помощью системного анализа определяется структурой решаемых проблем.

Цель курсовой работы – изучить теоретические основы системного анализа, характеристики важнейших системообразующих показателей, рассмотреть классификацию систем, что позволит более удобно использовать ее как подходы на начальном этапе моделирования любой задачи, т.к. определив класс системы для реального объекта, можно достаточно уверенно дать рекомендации по выбору метода, который позволит более адекватно ее отобразить.

Раздел 1. Теоретические основы системного анализа

1.1. Основные понятия теории систем и системного анализа

Определение понятия «система». В настоящее время нет един­ства в определении понятия «система». В первых определениях в той или иной форме говорилось о том, что система - это элементы и связи (отношения) между ними. Например, основопо­ложник теории систем Людвиг фон Берталанфи определял систему как комплекс взаимодействующих элементов или как совокупность элементов, находящихся в определенных отноше­ниях друг с другом и со средой. А. Холл определяет систему как «множество предметов вместе со связями между предметами и между их признаками». Ведутся и в настоящее время дискуссии, какой термин - «от­ношение» или «связь» - лучше употреблять.

Позднее в определениях системы появляется понятие цели. Так, в «Философском словаре» система определяется как «сово­купность элементов, находящихся в отношениях и связях между собой определенным образом и образующих некоторое целост­ное единство».

В последнее время в определение понятия системы наряду с элементами, связями и их свойствами и целями начинают включать наблюдателя, хотя впервые на необходимость учета взаимодействия между исследователем и изучаемой системой указал один из основоположников кибернетики У. Р. Эшби .

М. Месарович и Я. Такахара в книге «Общая теория систем» считают, что система - «формальная взаимосвязь между на­блюдаемыми признаками и свойствами», система - множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целост­ность, единство.

В соответствии с задачами системного исследования можно выделить два типа определения системы – дескриптивное и конструктивное.

Дескриптивное (описательное) - определение системы через ее свойства, через внешние проявления. Например, ключ – это предмет, легко открывающий замок.

Конструктивное определение – описание через элементы системы, связанные с основным системообразующим фактором – с функцией. В конструктивном плане система рассматривается как единство входа, выхода и процессора (преобразователя), предназначенных для реализации определенной функции.

Элемент. Под элементом принято понимать простейшую не­делимую часть системы. Ответ на вопрос, что является такой частью, может быть неоднозначным и зависит от цели рассмотрения объекта как системы, от точки зрения на него или от ас­пекта его изучения. Таким образом, элемент - это предел члене­ния системы с точек зрения решения конкретной задачи и постав­ленной цели. Систему можно расчленить на элементы различ­ными способами в зависимости от формулировки цели и ее уточнения в процессе исследования.

Подсистема. Система может быть разделена на элементы не сразу, а последовательным расчленением на подсистемы, кото­рые представляют собой компоненты более крупные, чем элемен­ты, и в то же время более детальные, чем система в целом. Возможность деления системы на подсистемы связана с вычлене­нием совокупностей взаимосвязанных элементов, способных вы­полнять относительно независимые функции, подцели, направленные на достижение общей цели системы. Названием «подси­стема» подчеркивается, что такая часть должна обладать свойст­вами системы (в частности, свойством целостности). Этим под­система отличается от простой группы элементов, для которой не сформулирована подцель и не выполняются свойства целост­ности (для такой группы используется название «компоненты»). Например, подсистемы АСУ, подсистемы пассажирского транс­порта крупного города.

Структура. Это понятие происходит от латинского слова structure, означающего строение, расположение, порядок. Структу­ра отражает наиболее существенные взаимоотношения между элементами и их группами (компонентами, подсистемами), кото­рые мало меняются при изменениях в системе и обеспечивают существование системы и се основных свойств. Структура - это совокупность элементов и связей между ними. Структура может быть представлена графически, в виде теоретико-множественных описаний, матриц, графов и других языков моделирования струк­тур.

Структуру часто представляют в виде иерархии. Иерархия - это упорядоченность компонентов по степени важности (много­ступенчатость, служебная лестница). Между уровнями иерархи­ческой структуры могут существовать взаимоотношения строго­го подчинения компонентов (узлов) нижележащего уровня одно­му из компонентов вышележащего уровня, т. е. отношения так называемого древовидного порядка. Такие иерархии называют сильными или иерархиями типа « дерева». Они имеют ряд особен­ностей, делающих их удобным средством представления систем управления. Однако могут быть связи и в пределах одного уров­ня иерархии. Один и тот же узел нижележащего уровня может быть одновременно подчинен нескольким узлам вышележащего уровня. Такие структуры называют иерархическими структурами со слабыми связями. Между уровнями иерархической структуры могут существовать и более сложные взаимоотношения, напри­мер, типа «страт», «слоев», «эшелонов», которые детально рас­смотрены в разделе “модели иерархических систем управления”. Примеры иерархических структур: энергетические системы, АСУ, государственный аппарат.

Связь. Понятие «связь» входит в любое определение системы наряду с понятием «элемент» и обеспечивает возникновение и со­хранение структуры и целостных свойств системы. Это понятие характеризует одновременно и строение (статику), и функциони­рование (динамику) системы.

Состояние. Понятием «состояние» обычно характеризуют мгно­венную фотографию, «срез» системы, остановку в ее развитии. Его определяют либо через входные воздействия и выходные сигналы (результаты), либо через макропараметры, макросвойст­ва системы (например, давление, скорость, ускорение - для фи­зических систем; производительность, себестоимость продукции, прибыль - для экономических систем).

Таким образом, состояние - это множество существенных свойств, которыми система обладает в данный момент времени.

Поведение. Если система способна переходить из одного со­стояния в другое (например, то говорят, что она обладает поведением. Этим понятием пользуются, когда неиз­вестны закономерности переходов из одного состояния в другое. Тогда говорят, что система обладает каким-то поведением и вы­ясняют его закономерности.

Внешняя среда . Под внешней средой понимается множество элементов, которые не входят в систему, но изменение их состо­яния вызывает изменение поведения системы.

Модель. Под моделью системы понимается описание систе­мы, отображающее определенную группу ее свойств. Углубление описания - детализация модели. Создание модели системы по­зволяет предсказывать ее поведение в определенном диапазоне условий.

Модель функционирования (поведения) системы - это мо­дель, предсказывающая изменение состояния системы во времени, например: натурные (аналоговые), электрические, машинные на ЭВМ и др.

Системный анализ. В настоящее время системный анализ яв­ляется наиболее конструктивным направлением. Этот термин применяется неоднозначно. В одних источниках он определяется как «приложение системных концепций к функциям управления, связанным с планированием» . В других - как синоним тер­мина «анализ систем» (Э. Квейд) или термина «системные ис­следования» (С. Янг). Однако независимо от того, применяется он только к определению структуры целей системы, к планирова­нию или к исследованию системы в целом, включая и функци­ональную и обеспечивающую части, работы по системному ана­лизу существенно отличаются от рассмотренных выше тем, что в них всегда предлагается методология проведения исследований, делается попытка выделить этапы исследования и предложить методику выполнения этих этапов в конкретных условиях. В этих работах всегда уделяется особое внимание определению целей системы, вопросам формализации представления целей. Некоторые авторы даже подчеркивают это в определении: системный анализ - это методология исследования целенаправленных си­стем (Д. Киланд, В. Кинг).

Термин «системный анализ» впервые появился в связи с зада­чами военного управления в исследованиях RAND Corporation (1948 г.), а в отечественной литературе получил широкое распрост­ранение после выхода в 1969 г. книги С. Оптнера «Системный анализ для решения деловых и промышленных проблем».

В начале работы по системному анализу в большинстве случа­ев базировались на идеях теории оптимизации и исследования операций. При этом особое внимание уделялось стремлению в той или иной форме получить выражение, связывающее цель со средствами, аналогичное критерию функционирования или пока­зателю эффективности, т, е. отобразить объект в виде хорошо организованной системы.

Так, например, в ранних руководящих материалах по раз­работке автоматизированных систем управления (АСУ) рекомен­довалось цели представлять в виде набора задач и составлять матрицы, связывающие задачи с методами и средствами до­стижения. Правда, при практическом применении этого подхода довольно быстро выяснялась его недостаточность, и исследова­тели стали прежде всего обращать внимание на необходимость построения моделей, не просто фиксирующих цели, компоненты и связи между ними, а позволяющие накапливать информацию, вводить новые компоненты, выявлять новые связи и т. д„ т. е. отображать объект в виде развивающейся системы, не всегда предлагая, как это делать.

Позднее системный анализ некоторые исследователи начинают определять как «процесс последовательного разбиения изучаемого процесса на подпроцессы» (С. Янг) и основное внимание уделяют поиску приемов, позволяющих организовать решение сложной проблемы путем расчленения ее на подпроблемы и этапы, для которых становится возможным подобрать методы исследования и исполнителей. В большинстве работ стремились представить многоступенчатое расчленение в виде иерархических структур типа «дерева», но в ряде случаев разрабатывались методики получения вариантов структур, определяемых временными последовательностями функций.

В настоящее время системный анализ развивается примени­тельно к проблемам планирования и управления, и в связи с уси­лением внимания к программно-целевым принципам в планиро­вании этот термин стал практически неотделим от терминов «целеобразование» и «программно-целевое планирование и упра­вление». В работах этого периода системы анализируются как целое, рассматривается роль процессов целеобразования в раз­витии целого, роль человека. При этом оказалось, что в систем­ном анализе не хватает средств: развиты в основном средства расчленения на части, но почти нет рекомендаций, как при рас­членении не утратить целое. Поэтому наблюдается усиление внимания к роли неформализованных методов при проведении системного анализа. Вопросы сочетания и взаимодействия фор­мальных и неформальных методов при проведении системного анализа не решены. Но развитие этого научного направления идет по путиих решения. анализ Контрольная работа >> Менеджмент

РАБОТА ПО ДИСЦИПЛИНЕ «Общая теория систем и системный анализ» Проверил, к.т.н., доцент Тарасов Ю.Н. ______________________2010г. Автор... , кардинальные изменения в организационной структуре и т.д. Преимущества классификации целей по их направленности состоят...

  • Системный анализ в исследованиях систем управления

    Реферат >> Менеджмент

    ... системного анализа Основание классификации Виды системного анализа Характеристика Назначение системного анализа Исследовательский системный ... основы системного анализа . - М.: Майор, 2006. – С. 46 2 Сурмин, Ю. П. Теория систем и системный анализ : Учеб...

  • Системный анализ деятельности риэлтерской фирмы

    Реферат >> Менеджмент

    РАБОТА по дисциплине «Теория систем и системный анализ» на тему: Системный анализ деятельности риэлтерской фирмы. Выполнил... , поставленных перед системой. Рассмотрим различные классификации систем : Различают физические и абстрактные системы. Физические...

  • Система как объект системного анализа

    Курсовая работа >> Государство и право

    Глава 1. Системный анализ в исследовании систем Анализ подходов к исследованию систем ………………………………5 Системный анализ как основное направление... системы. Анализ классификаций систем . Объектом курсовой работы выступает системный анализ как основное...

  • Балтийский государственный технический университет «ВОЕНМЕХ»

    ОСНОВЫ

    СИСТЕМНОГО АНАЛИЗА

    Учебное пособие

    «Издательский дом «Бизнес-пресса»

    Санкт-Петербург

    УДК 303.732.4

    ББК 65.05

    Рецензенты:

    доктор технических наук, профессор, зав. кафедрой Санкт-Петербургского государственного института точной механики и оптики (технический университет)

    академик акмеологических наук, президент АРИСИМ, доктор технических наук, профессор Санкт-Петербургской государст­венной инженерно-экономической академии

    С 72 Основы системного анализа: Учеб. пособие. - СПб.: «Изд. дом «Бизнесс-пресса», 2000 г. - 326 с.

    В учебном пособии представлены история развития и ло­гико-методологические основы системного анализа. Рассмот­рены практические основы использования системного ана­лиза в науке, технике, экономике, образовании.

    УДК 303.732.4

    © «Издательский дом

    «Бизнес-пресса», 2000

    ВВЕДЕНИЕ

    Глава 1. НЕОБХОДИМОСТЬ ПОЯВЛЕНИЯ СИСТЕМНОГО АНАЛИЗА, ЕГО СУТЬ И ТЕРМИНОЛОГИЯ

    1.1. История развития системного подхода

    1.2. Современный этап научно-технической революции (НТР)

    1.2.1. НТР как система

    1.2.2. Особенности современной науки

    1.2.3. Создание технических систем - прогрессивное направление развития техники

    1.2.4. Образование и его роль в НТП

    1.2.5. Еще раз о науке в целом

    1.2.6. Развитие технических систем как объект исследования, оценки и управления

    1.3.1. Система

    1.3.2. Связь

    1.3.3. Структура и структурное исследование

    1.3.4. Целое (целостность)

    1.3.5. Элемент

    1.3.6. Системный подход (СП)

    1.3.7. Системный анализ

    1.3.8. Другие понятия системного анализа

    Глава 2. ЛОГИКА И МЕТОДОЛОГИЯ СИСТЕМНОГО АНАЛИЗА

    2.1. Логические основы системного анализа

    2.2. Методология познания

    2.2.1. Понятие о методе и методологии

    2.2.2. Виды методологии и их создание

    2.2.3 Методы системного анализа

    2.2.4. Принципы системного анализа

    2.3. Интегральный тип познания

    ГЛАВА 3. ТЕОРИЯ И ПРАКТИКА РЕАЛИЗАЦИИ СИСТЕМНОГО АНАЛИЗА

    3.1. Рабочие этапы реализации системного анализа

    3.2. Цикл как фундамент мироздания

    3.3. Теория циклов

    3.4. ПЖЦ ТС - принцип и объект оценки и управления

    3.5. Значение полного жизненного цикла

    3.6. Организационные структуры управления

    3.7. Некоторые практические результаты применения системного анализа

    ЗАКЛЮЧЕНИЕ

    ВВЕДЕНИЕ

    Кто берется за частные вопросы, без предварительно­го

    решения общих, тот неминуемо будет на каждом шагу

    бессознательно для себя «натыкаться» на эти общие

    воп­росы. А натыкаться слепо на них в каждом частном слу­чае - значит обрекать свою политику на худшие шатания и беспринципность.

    «Исследователь ощущает свое невежество тем боль­ше, чем больше он знает...» - это парадоксальное заме­чание крупнейшего физика нашего времени Р. Оппенгеймера как нельзя более точно характеризует парадоксальную ситуацию в современной науке. Если еще недавно ученый буквально гонялся за фактами, то сегодня он не в силах справиться с их половодьем. Аналитические мето­ды, столь эффективные при изучении частных процессов, уже не работают. Нужен новый, более действенный прин­цип, который помог бы разобраться в логических связях между отдельными фактами. Такой принцип был найден и получил название принцип системного движения или системного подхода (СП).

    Этот принцип определяет не только новые задачи, но и характер всей управленческой деятельности, научное, техническое, технологическое и организационное совер­шенствование которой обусловлено самой природой круп­ного общественного и частного производства.

    Многообразие и возрастающий объем стоящих перед нами задач хозяйственного строительства требует их вза­имной увязки, обеспечения общей целенаправленности. Но этого трудно достичь, если не учитывать сложной за­висимости между отдельными районами страны, между отраслями народного хозяйства, между всеми сферами общественной жизни страны. Более конкретно, 40% ин­формации специалисту необходимо черпать из смежных областей, а подчас и отдаленных.

    Уже сегодня системный подход используют во всех областях знания, хотя в ее различных областях он прояв­ляется по-разному.

    Так, в технических науках речь идет о системотехни­ке, в кибернетике - о системах управления, в биологии - о биосистемах и их структурных уровнях, в социологии - о возможностях структурно-функционального подхода, в медицине - о системном лечении сложных болезней (коллагенозы , системные васкулиты и др.) терапевтами широ­кого профиля (врачами-системщиками).

    В самой природе науки лежит стремление к единству и синтезу знания. Изучение этого стремления, выявле­ние особенностей этого процесса - одна из задач совре­менных исследований в области теории научного знания. В современной науке и технике из-за их необычайной дифференцированности и насыщения информацией пробле­ма концептуального синтеза приобретает особенно важ­ное значение. Философский анализ природы научного знания предполагает рассмотрение его структуры, кото­рое позволяет выявить пути и способы единства и синте­за знаний, ведущие к формированию новых понятий, к концептуальному синтезу. Изучая процессы объединения и синтеза научных теорий в сфере развивающихся наук, можно выявить их различные типы и формы. При перво­начальном подходе к проблеме мы не усматриваем различия между единством знания и его синтезом. Заметим только, что понятие единства знания предполагает опре­деленное его расчленение, его структуру. Синтез знания, понятный как процесс рождения нового, возникает на основе определенных типов объединения или взаимодействия его структурных форм. Иначе говоря, единство и синтез знания - лишь определенные ступени в разви­тии науки. Среди многообразия форм объединения знания, веду­щих к синтезу, легко усмотреть четыре различных типа, иначе говоря, четыре типа единства научного знания.

    Первый тип объединения состоит в том, что в процессе дифференциации знания возникают научные дисциплины, подобные кибернетике, семиотике, общей теории систем, содержание которых связано с выявлением общего в са­мых различных областях исследования. На этом пути про­исходит своеобразная интеграция знания, компенсирую­щая до некоторой степени многообразие и отграничение друг от друга различных научных дисциплин. Общеизвест­но, что на этом пути синтезируется новое знание.

    Рассматривая более детально такую интеграцию, мы можем наблюдать второй тип единства научного знания. Изучая генезис научных идей, мы замечаем тенденцию к методологическому единству. Эта тенденция заключается в методологическом продолжении одной специальной на­уки, т. е. в перенесении ее теории на другие области ис­следования. Этот второй путь к единству знания можно назвать методологической экспансией. Сразу же заметим, что эта экспансия, плодотворная на определенном этапе, рано или поздно обнаруживает свои границы.

    Третий тип стремления к единству научного знания связан с фундаментальными понятиями, которые перво­начально возникают в сфере естественного языка и вклю­чаются затем в систему философских категорий. Такого рода понятия путем соответствующих уточнений приоб­ретают смысл исходных понятий формирующихся науч­ных теорий. Можно сказать, что в данном случае мы име­ем дело с концептуальной формой единства науки.

    Последовательное развитие концептуального единства науки создает предпосылки для четвертого и в известном смысле самого существенного пути к единству и синтезу научного знания, а именно - пути разработки и исполь­зования единой философской методологии. Наука - это система многообразных знаний, и развитие каждого эле­мента этой системы невозможно без их взаимодействия. Философия исследует принципы этого взаимодействия и тем самым способствует объединению знания. Она дает основание для высшего синтеза, без которого невозможен синтез научного знания на его более специальных уров­нях исследования (Овчинников един­ство и синтез научного знания в свете ленинских идей // Вопр. филос. 1969. № 10).

    Возможны и другие подходы к проблеме единства и синтеза знания. Но так или иначе эта проблема нуждает­ся в качестве предпосылки исследования в определенном истолковании природы науки. А она системна, так же как и окружающий нас мир, наше познание и вся человеческая практика. Следовательно, исследование этих объек­тов должно осуществляться с помощью методов, адекват­ных их природе, т. е. системных!

    Системность мира представляется в виде объективно существующей иерархии различно организованных взаи­модействующих систем. Системность мышления реализу­ется в том, что знания представляются в виде иерархиче­ской системы взаимосвязанных моделей. Хотя люди и являются частью природы, человеческое мышление обладает определенной самостоятельностью относительно окружа­ющего мира: мыслительные конструкции вовсе не обяза­ны подчиняться ограничениям мира реальных конструк­ций. Однако при выходе в практику неизбежны сопостав­ление и согласование системностей мира и мышления.

    Практическое согласование идет через практику по­знания (сближения моделей с реальностью) и практику преобразования мира (приближения реальности к моде­лям). Обобщение этого опыта привело к открытию диалектики; следование ее законам является необходимым условием правильности нашего познания, адекватности наших моделей. Современный системный анализ исходит в своей методологии из диалектики. Можно выразиться более определенно и сказать, что системный анализ есть прикладная диалектика. С появлением системного анали­за философия перестала быть единственной теоретической дисциплиной, не имеющей прикладного аналога. С прак­тической же стороны прикладной системный анализ яв­ляется методикой и практикой улучшающего вмешатель­ства в реальные проблемные ситуации.

    Во-первых, важный этап исследования реальных ситу­аций и построения их моделей (разных уровней - от вер­бальной до математической) является общим для всех спе­циальностей. Для этого этапа системный анализ предла­гает подробную методику, овладение которой должно стать важным элементом в подготовке специалистов любого (не только технического, но также естественного и гумани­тарного) профиля.

    Во-вторых, для некоторых инженерных специальнос­тей, прежде всего связанных с проектированием слож­ных систем, а также для прикладной математики систем­ный анализ в скором будущем, очевидно, станет одним из профилирующих курсов.

    В-третьих, практика прикладного системного анализа в ряде стран убедительно показывает, что такая деятель­ность в последние годы становится для многих специали­стов профессией, и уже в некоторых университетах раз­витых стран начат выпуск таких специалистов.

    В-четвертых, чрезвычайно благоприятной аудиторией для преподавания системного анализа являются курсы по­вышения квалификации специалистов, проработавших после окончания вуза несколько лет на производстве и на собственном опыте испытавших, как непросто иметь дело с проблемами реальной жизни.

    Введение системного анализа в вузовские учебные пла­ны и учебный процесс связано с преодолением некоторых трудностей. Главные из них - преобладание технократи­ческого подхода в инженерном образовании, традиционно аналитическое построение наших знаний, специальностей, отображенное в дисциплинарной организации факульте­тов и кафедр, нехватка учебной литературы , неосознан­ность существующими фирмами потребности иметь про­фессионалов-системщиков в своих штатах, так что таких специалистов готовить вроде бы не для кого. Последнее не случайно, ибо, по социологическим опросам, лишь 2-8% населения владеет (стихийным) системным анализом.

    Однако жизнь берет свое. Резко возросшие требова­ния к качеству подготовки выпускаемых высшей школой специалистов, необходимость междисциплинарного подхода к решению сложных вопросов, нарастание глубины и мас­штабности проблем при ограничении сроков и ресурсов, отводимых на их решение, - все это значимые факторы, которые сделают преподавание системного анализа необ­ходимым, более того, неизбежным (Тарасенко Ф. Введе­ние к статье Р. Акоффа «Рассогласование между системой образования и требованиями к успешному управлению // Вестн. высш. шк. 1990. № 2). А психологическую инерцию, которая всегда стояла на пути нововведений, можно пре­одолеть только пропагандой новых идей, ознакомлением широкой педагогической, научной и студенческой общественности с существом нового, пробивающего себе доро­гу. Будем надеяться, что предлагаемое пособие сыграет свою роль в том, чтобы привлечь внимание студентов и препо­давателей к некоторым особенностям системного анализа. Тем более системный анализ перспективен и для гармоничного развития личности, для получения студентом пред­ставления о научной картине мира (НКМ) как целостного усвоения знаний по основам наук, и для формирования научного мировоззрения, и для понимания знаний! Имен­но непонимание ведет к утрате желания многих учиться, потере престижа высшей школы.

    Обобщая сказанное, можно сделать твердый вывод о необходимости введения в современное образование дис­циплины «системный анализ» - как в виде одного из общих курсов в фундаментальной подготовке студентов и слушателей, так и в виде новой специальности, существу­ющей пока лишь в нескольких вузах мира, но, несомнен­но, являющейся весьма перспективной.

    Изучение системного анализа предлагается начать с ознакомления опорных сигналов (по). По­чему? Весь окружающий нас мир имеет системную (не­линейную) природу. Поэтому составляющие его объекты, явления и процессы должны объективно отражать его реалии, т. е. быть также системными, нелинейными. Од­нако современная система (какой парадокс в названии!) высшего образования построена по линейному принци­пу - и в этом ее существенный недостаток. Он может изживаться постепенно, через переход от линейных к не­линейным формам. Путей этого движения много. Один из них - разработка и изучение опорных сигналов, пред­ставляющих собой нелинейный текст (гипертекст!), за ко­торое отвечает правое полушарие мозга человека, создаю­щее полнокровный и натуральный образ мира. Именно опорные сигналы фиксируют и интенсифицируют самостоятельную работу студентов, в том числе и в направле­нии изучения и понимания системного анализа.

    Опорные сигналы (ОС) - это специально закодиро­ванное и особым образом оформленное содержание темы, раздела или дисциплины в целом. Принципами кодирова­ния являются:

    извлечение квинтэссенции материала;

    представление материала в наиболее удобном для изу­чения виде.

    Опорные сигналы для изучения системного анализа

    1. Сведение множества к единому - в этом первоосно­ва красоты (Пифагор, древнегреческий ученый, профессор).

    2. Глубина прозрения и элегантность гипотезы - по­чти всегда следствие общности (В. Дружинин, профес­сор; Д. Конторов, профессор).

    4. Те, кто задерживаются только на «деталях» позна­ния, обретают «печать духовного убожества» (Жюльен Офре Ламерти, французский философ и врач, представи­тель французского материализма).

    5. ...Различные вещи становятся количественно срав­нимыми лишь после того, как они сведены к одному и тому же единству. Только как выражения одного и того же един­ства они являются одноименными, а следовательно, срав­нимыми величинами (К. Маркс, Ф. Энгельс, немецкие фи­лософы).

    6. В недалеком времени общество будет иметь «одну науку». Представители ее не сверхуниверсалы, все зна­ющие и все умеющие. Это будут высокообразованные, эрудированные люди, обладающие глубокими представ­лениями о развитии науки и общества в целом, знаю­щие основные пути и возможности познания через «се­бя» (человека) всей природы. В то же время они будут универсалами в какой-то одной или группе отраслей (К. Маркс).

    7. Единство природы обнаруживается в поразитель­ной аналогичности дифференциальных уравнений, отно­сящихся к разным областям явлений (- осно­ватель советского государства).

    8. Факты в науке и технике, если взять их в целом, в их связи, не только «упрямая», но и безусловно доказа­тельная вещь... Необходимо брать не отдельные факты, а всю совокупность относящихся к рассматриваемому во­просу фактов, без единого исключения. Мы никогда не до­стигнем этого полностью, но требование всестороннос­ти предостережет нас от ошибок и от «омертвления» ().

    9. Кто берется за частные вопросы, без предваритель­ного решения общих, тот неминуемо будет на каждом шагу бессознательно для себя «натыкаться» на эти об­щие вопросы. А натыкаться слепо на них в каждом част­ном случае - значит обрекать свою политику на худшие шатания и беспринципность ().

    10. Наука представляет собой единое целое. Ее раз­деление на отдельные области обусловлено не столько при­родой объектов, сколько ограниченностью способностей человеческого познания. В действительности, «существует непрерывная цепь от физики к химии, через биологию и антропологию к социальным наукам, ц е п ь, которая ни в одном месте не может быть разорвана, разве лишь по про­изволу» (разрядка моя. - В. С .) (М. Планк, немецкий фи­зик, лауреат Нобелевской премии).

    11. Цель современной науки - раскрыть внутреннюю связь и тенденции, открыть законы, объективную логику этих изменений ().

    12. Цель современной науки состоит в том, чтобы видеть общее в частном и постоянное в переходящем (К. Уайтхед, канадский профессор).

    13. ...Необходим комплексный, системный подход к вы­работке ответственных решений. Мы приняли такой на вооружение и будем последовательно проводить его в жизнь (, Генеральный секретарь ЦК КПСС).

    14. Наука серьезно обогатила теоретический арсенал планирования, разработав методы экономико-математи­ческого моделирования, системного анализа и др. Необхо­димо шире использовать эти методы... Это делает важ­ным не только производство соответствующей техники, но и подготовку значительного числа квалифицированных кадров (А. И. Брежнев).

    15. Среди самых насущных проблем развития совре­менной науки одно из первых мест занимает и н т е г р а ­ц и я научных знаний. Она находит свое выражение в вы­работке общих понятий, принципов, теорий, концепций в создании общей (разрядка моя. - В. С .) картины мира. Бурный процесс появления общих теорий отдельных ви­дов знаний обусловливается в первую очередь интереса­ми повышения их эффективности и способностью их уплотнения (В. Турченко, философ).

    16. Синтез различных наук оказался в высшей степени плодотворным. Данная тенденция становится важнейшей, ибо наиболее крупные открытия нашего времени сделаны на стыках различных наук, где родились новые научные дисциплины и направления (, философ).

    17. Процесс интеграции приводит к выводу, что мно­гие проблемы получат правильное научное освещение толь­ко в том случае, если они будут опираться одновременно на общественные, естественные и технические науки. Это требует применения результатов исследования разных специалистов - философов, социологов, психологов, эконо­мистов, инженеров... Именно в связи с процессами инте­грации возникла потребность развития системных иссле­дований (, философ).

    18. Метод целостного подхода имеет важнейшее значе­ние в становлении более высокой ступени мышления, а именно перехода от аналитической ступени к синтетической, которая направляет познавательный процесс к более все­стороннему и глубокому (разрядка моя. - В. С. ) познанию явлений (, философ; , философ).

    19. Главная цель любой науки состоит в том, чтобы свести самое удивительное к обычному, чтобы показать, что сложность, если смотреть на нее под верным углом, оказывается лишь з а м а с к и р о в а н н о й (разрядка моя. - В. С. ) простотой, чтобы открыть закономерности, скрывающиеся в кажущемся хаосе. Но эти закономерности мо­гут быть очень сложными по своему представлению или содержать такие исходные данные, которых не хватает для осуществления какого-либо расчета (Э. Квейд, амери­канский системщик).

    20. Мыслительная деятельность отдельного Человека тем продуктивнее и логичнее, чем полнее и глубже он ус­воил в с е о б щ и е (разрядка моя. - В. С. ) категории мыш­ления (, профессор).

    21. В природе нет отдельно существующих техники и технологии, физики и биологии, исследования и проекти­рования (М. Планк).

    22. Явления природы, как правило, комплексны. Они ничего не знают о том, как мы поделили наши знания на науки. Только всестороннее рассмотрение явлений с точ­ки зрения физики, химии, механики, а иногда и биологии позволит распознать их сущность и применить на прак­тике (, академик).

    23. НТР выявила ряд интеллектуальных «болезней». Одна из них - узость профессионального сознания. В любой об­ласти научно-технической деятельности нельзя сделать что-либо существенное, если сосредоточить внимание и усилия на узком месте. Сужение поиска - условие как будто грамотного решения проблемы. Но постоянное участие специалистов в такого рода программах нередко приводит к тому, что они теряют панорамное видение всего фронта работ. Возникает «глухота специализации», которая при неблагоприятных условиях может перерасти в «заболева­ние», названное К. Марксом «профессиональным кретиниз­мом». Не случайно, что именно он заложил принципы СП при анализе капиталистического производства. Его «Капи­тал» - первое фундаментальное системное исследование структуры общества (Е. Жариков, профессор).

    24. Системных подход к явлениям - одно из важней­ших интеллектуальных свойств человека (, профессор).

    25. Чтоб жизни суть постичь

    И описать точь-в-точь,

    Он, тело расчленив,

    А душу выгнав прочь,

    Глядит на части. Но...

    Духовная их связь

    Исчезла, безвозвратно унеслась!

    Г. Гете, немецкий поэт

    В одно мгновенье видеть вечность,

    Огромный мир - в зерне песка,

    В единой горсти - бесконечность

    И небо - в чашечке цветка.

    У. Блейк, английский философ и поэт

    26. Подход научный - значит системный!!! ().

    27. Мир, наше познание и вся человеческая практика имеют системную природу. Информация идет из окружа­ющего мира. Мы - мыслим. Необходимо согласование си­стемности и мышления. Но мышление обеспечивается образованием. Следовательно, и оно должно быть системным!!! ().

    28. Была подорвана престижность инженерного твор­чества, растеряны всемирно известные отечественные школы разработчиков техники. Сложилась порочная фило­софия подражания и посредственности. В результате часть продукции не отвечает современному уровню науки и тех­ники. В чем же... корни сложившегося положения с техни­ческим уровнем создаваемых машин? Прежде всего в том, что по существу до сих пор у нас отсутствовал систем­ный анализ новейших мировых достижений (­чев, Генеральный секретарь ЦК КПСС).

    29. Считаю, что в этом виновата и высшая школа, не готовя соответствующих специалистов. В передовой статье «На путях перестройки высшего образования» (Вест­ник высшей школы. 1986. № 7) отмечается, что «...сейчас впервые предложены решения, базирующиеся на систем­ных позициях ().

    30. Важный этап системных исследований реальных ситуаций и построения их моделей является общим прак­тически для всех специальностей;

    для инженерных специалистов, связанных с проекти­рованием СТС, также для прикладной математики сис­темный анализ в скором будущем (чего ждать, и так опоз­дали. - В. С. ) очевидно, станет одним из профилирующих курсов;

    практика прикладного СА в ряде стран убедительно показывает, что такая научно-техническая деятельность (НТД) в последние годы становится для многих специалис­тов профессией, и уже в нескольких университетах разви­тых стран начат выпуск таких специалистов;

    чрезвычайно благоприятной аудиторией для препода­вания СА является ИПК специалистов, проработавших после окончания вуза несколько лет на производстве и на собственном опыте испытавших, как непросто иметь де­ло с проблемами реальной жизни (, профессор).

    Трудности введения СА в уч/процесс: традиционно аналитическое построение наших знаний и специальнос­тей, отображенное в организации факультетов и кафедр. Поэтому руководители не знают сущности СА! Доклад в ЛГУ: «Кто мыслит системно?» Ответ: 8% руководите­лей Северо-Запада ().

    31. В чем же заключается важность СА? Прежде все­го - для принятия оптимальных решений (­дель). Половина беспокойства в мире (а следовательно, и болезней) происходит от людей, пытающихся принимать решения без достаточного знания того, на чем основыва­ется решение. Решение должно быть не любым, а оптималь­ным. Но нельзя принять оптимального решения в рамках предметного знания! (А. Рапопорт, канадский профессор).

    32. Я не знаю ни одного завершенного системного ис­следования в технике (, академик).

    33. Современные системные исследования, к сожале­нию, остаются либо частнонаучными разработками, либо концентрируются вокруг формальных методологических вопросов (, профессор).

    34. Исключая единичные случаи, необходимо признать, что системная методология редко используется в массовом масштабе и для большинства разработок... характерно эм­пирическое развитие метода проб и ошибок (­ров, академик).

    35. Системный подход легко провозглашается в общем виде, но очень трудно реализуется в конкретной форме, т. к. многоаспектная ориентация требует специальной научной, организационной, технической, педагогической подготовки и др. условий в совокупности с целенаправленными мероприятиями по ресурсному обеспечению сис­темной деятельности. Подчеркнем, единой и непрерыв­ной системной деятельности, начиная от исследования конкретного объекта и кончая ликвидацией, наступаю­щей после физического или морального его устаревания ().

    36. СА характеризуется главным образом не специфи­ческим научным аппаратом, а упорядоченным (разряд­ка моя. - В. С .), логически обоснованным подходом к иссле­дованию проблемы и использованию соответствующих ме­тодов их решения, которые могут быть разработаны в рамках других наук (, профессор).

    37. Если естествознание было преимущественно со­бирающей наукой, то сейчас оно стало в сущности упо­рядочивающей (разрядка моя. - В. С. ) наукой, наукой о связях (Ф. Энгельс).

    38. Все мы... пользуемся огромным запасом неосознан­ных знаний, навыков и умений, сформировавшихся на про­тяжении длительной эволюции человечества (, академик). В связи с этим возникает вопрос - как мы можем студентам читать эти неосознанные знания, тем более нацеливая их на самостоятельную работу? ().

    39. Большинство специалистов понимают (синтез) не прямо, а зигзагами, не сознательно, а стихийно, идут к нему, не видя ясно своей конечной цели, а приближаясь ней ощупью, шатаясь, иногда даже задом ().

    40. С принципом развития (элемент СА. - В. С. ) со­гласны все. Но это есть поверхностное согласие, кото­рым душат и опошляют истину ().

    41. Сегодня о системном подходе говорится практи­чески во всех науках, хотя в ее различных разделах он проявляется по-разному. Так, в технических науках речь дет о системотехнике, в кибернетике - о СУ, в биоло­гии - о биосистемах и их структурных уровнях, в соци­ологии - о возможностях структурно-функционального подхода, в медицине - о сложных системных болезнях (коллагенозы, системные васкулиты и пр.), лечить кото­рые должны терапевты широкого профиля (врачи-системщики) (, академик).

    42. Существо системного подхода ярко выражено в одном высказывании, приписываемом английскому офице­ру периода Второй мировой войны: «Эти парни не возьмут в руки даже паяльника, пока они досконально не разберут­ся в стратегии военных действий на всем Тихоокеанском театре». Налицо целостность локальных и глобальных задач конкретной деятельности! ().

    43. Значение системности: для принятия оптималь­ных (!) решений, которые невозможно принять в предмет­ном знании; в противном случае - головотяпство и не­компетентность; для сокращения нагрузки на память; пе­регрузки в ВШ возникают за счет слишком большой мобилизации памяти студентов при ярко выраженной не­догрузки их мысли, воображения и фантазии; практика: повышает интерес студентов к науке; не только развива­ет студентов, но и воспитывает их; восприятие теоре­тических знаний происходит целыми блоками; СА - пред­посылка дальнейшего рационального овладения знаниями; коль скоро студент будет осознавать природу знаний, пути их получения и фиксации, состав и структуру научной теории, то он сможет осмыслить новые знания по об­разцу, усвоенному в вузе через курс СА; установка на ос­мысление знаний в определенной структуре приводит сту­дента к формулировке вопросов, на которые он должен искать ответ в разных источниках, к критическому рас­смотрению новой информации; все это является необхо­димыми элементами творческого мышления; для понима­ния, потому что именно оно является результатом син­теза, а не анализа; системность позволяет получить Н KM - целостное усвоение знаний по основам наук.

    Ведь наука представляет собой единое целое и ее раз­деление на отдельные области условно. НКМ - это модель, образ действительности, в основе которого лежат данные конкретных наук о природе и обществе. Знания, относящиеся к НКМ, называют мировоззренческими: они формируются очень медленно, но СА ускоряет их форми­рование ().

    ГЛАВА 1. НЕОБХОДИМОСТЬ ПОЯВЛЕНИЯ

    СИСТЕМНОГО АНАЛИЗА, ЕГО СУТЬ

    И ТЕРМИНОЛОГИЯ

    Сведение множества к единому - в этом первоосно­ва красоты.

    Пифагор

    История - это наука о прошлом и наука о будущем.

    Л. Февр

    1.1. История развития системного подхода

    Составляющим понятий «системный анализ», «систем­ная проблема», «системное исследование» является слово «система», которое появилось в Древней Элладе 2000-2500 лет назад и первоначально означало: сочетание, орга­низм, устройство, организация, строй, союз. Оно также выражало определенные акты деятельности и их резуль­таты (нечто, поставленное вместе; нечто, приведенное в порядок).

    Первоначально слово «система» было связано с фор­мами социально-исторического бытия. Лишь позднее прин­цип порядка, идея упорядочивания переносятся на Все­ленную.

    Перенос значения слова с одного объекта на другой и вместе с тем превращение слова в обобщенное понятие совершаются поэтапно. Метафоризация слова «система» была начата Демокритом (460-360 до н. э.), древнегре­ческим философом, одним из основоположников материалистического атомизма. Образование сложных тел из атомов он уподобляет образованию слов из слогов и сло­гов из букв. Сравнение неделимых форм (элементов с буквами) - один из первых этапов формирования науч­но-философского понятия, обладающего обобщенным уни­версальным значением.

    На следующем этапе происходят дальнейшая универ­сализация значения слова, наделение его высшим обоб­щенным смыслом, что позволяет применять его и к физи­ческим, и к искусственным объектам. Универсализация может осуществляться двояко - или в процессе мифотворчества, т. е. построения мифа на основе метафоры [ха­рактерно для одного из основателей объективного идеализ­ма Платона (427-347 до н. э.)], или же путем воссоздания философско-рациональной картины мироздания и челове­ческой культуры, т. е. трансформирования и развертыва­ния метафоры в философской системе [характерно для Аристо-322 до н.э. ), колеблющегося между ма­териализмом и идеализмом] [ «Этапы интер­претации системности научного знания (античность и новое время)». Системные исследования // Ежегодник. М.: Наука, 1974].

    Итак, в античной (древней) философии термин «систе­ма» характеризовал упорядоченность и целостность естественных объектов, а термин «синтагма » - упорядоченность и целостность искусственных объектов, прежде всего про­дуктов познавательной деятельности . Именно в этот период был сформулирован тезис о том, что целое больше суммы его частей (Философский словарь. М.: Политиздат, 1980).

    Не касаясь вопроса о трактовке системности знания в средневековой философии, отметим лишь, что для выра­жения интегративности познавательных образований здесь стали использоваться новые термины: сумма, дисципли­на, доктрина...

    С возникновением науки и философии Возрождения (XV в.) связано радикальное преобразование в истолкова­нии бытия. Трактовка бытия как космоса сменяется рас­смотрением его как системы мира. При этом система мира понимается как независимое от человека, обладающее сво­им типом организации, иерархией, имманентными (свойственными, внутренне присущими какому-либо предме­ту, явлению, проистекающими из их природы) законами и суверенной структурой. Кроме того, бытие становится не только предметом философского размышления, стре­мящегося постичь его целостность, но и предметом социально-научного анализа. Возникает ряд научных дисцип­лин, каждая из которых вычленяет в природном мире определенную область и анализирует ее свойственными этим дисциплинам методами.

    Астрономия была одной из первых наук, которая пере­шла к онтолого-натуралистической интерпретации систем­ности мироздания. Большую роль в становлении новой трактовки системности бытия сыграло открытие Н. Коперника (1473-1543). Он создал Гелиоцентрическую сис­тему мира, объяснив, что Земля, как и другие планеты, обращается вокруг Солнца и, кроме того, вращается вокруг своей оси. Телеологизм, отягощавший представления Ко­перника, был преодолен позднее Г. Галилеем (1564-1642) и И. Ньютоном (1642-1727).

  • 54.1 Умножение чисел со старших разрядов в прямом коде
  • Умножение с младших разрядов в дополнительном коде
  • Умножение со старших разрядов в дополнительном коде
  • 55.1 Методы выполнения операции деления.
  • 2 Деление двоичных чисел с фиксированной запятой
  • 2.8. Деление двоичных чисел с плавающей запятой
  • 55.2 Язык программирования php. Синтаксис. Основные операторы.
  • 56.1 Основные положения и законы алгебры логики
  • 56.2 Dhtml. JavaScript. Возможности и области применения
  • 2. Моделированиеэкспоненциальнойслучайнойвеличины
  • 1. Алгоритм реализации датчика дискретной с.В.
  • 2. Пуассоновская с.В
  • 58.1.Минимизация логической функции.
  • 59.1 Синтез комбинационных логических схем в различных базисах.
  • 59.2 Интерфейс программного обмена данными. Структура системной шины.
  • 59.3. Реляционная алгебра. Sql
  • 60.1.Основные характеристики и параметры интегральных логических элементов. Виды интегральных схем по функциональному назначению.
  • Итнернет технологии
  • 2.1 Как работают механизмы поиска
  • 60.3 Проектирование реляционной бд, функциональные зависимости, декомпозиция отношений, нормальные формы.
  • 62.1 Законы Кирхгофа и преобразование электрических цепей на их основе.
  • Габариты трансформатора
  • Достоинства трансформаторных бп
  • Недостатки трансформаторных бп
  • Достоинства импульсных бп
  • Недостатки импульсных бп
  • 68.3 Понятие и принципы построения математической модели, параметры и ограничения. Задачи математического программирования, классификация.
  • 69.1Аналого-цифровые преобразователи.
  • 70.1Цифро-аналоговые преобразователи.
  • 70.2 Логические единицы работы многозадачных операционных систем и их использование
  • Ион на полевых транзисторах
  • 72.3 Общие положения стандарта шифрования данных гост 28147-89 и режим простой замены в стандарте шифрования данных гост 28147-89.
  • 73.1 Принципы конвейерной обработки информации в эвм.
  • 73.2. Способы адресации и их использование в ассемблерных программах.
  • 2. Непосредственная адресация
  • 73.3 Понятие политики безопасности: общие положения, аксиомы защищённых систем, понятия доступа и монитора безопасности.
  • 1 Человек-пользователь воспринимает объекты и получает информацию о состоянии ас через те субъекты, которыми он управляет и которые отображают информацию.
  • 2 Угрозы компонентам ас исходят от субъекта, как активного компонента, изменяющего состояние объектов в ас.
  • 3 Субъекты могут влиять друг на друга через изменяемые ими объекты, связанные с другими субъектами, порождая субъекты, представляющие угрозу для безопасности информации или работоспособности системы.
  • 74.1Организация памяти эвм. Горизонтальное и вертикальное разбиение. Расслоение обращений. Организация памяти эвм. Горизонтальное и вертикальное разбиение памяти. Расслоение обращений.
  • 74.2 Сравнение программных возможностей современных операционных систем (Windows, Unix).
  • По удобству использования и наличию особых режимов
  • Вопрос 1
  • Вопрос 2
  • Понятие энтропии Энтропия как мера неопределенности
  • Свойства энтропии
  • 75.1 Подходы к организации эвм. Эвм, управляемые данными. Эвм, управляемые запросами.
  • Методика построения помехоустойчивых кодов. Информационный предел избыточности
  • 1.1. Принципы помехоустойчивого кодирования
  • 761 Организация ввода-вывода информации в эвм. Программный обмен, обмен через прерывания, режим прямого доступа к памяти.
  • Организация ввода/вывода информации в эвм. Программный обмен, обмен через прерывания, режим прямого доступа к памяти.
  • Глава II
  • 11.1. Проблемы организации систем ввода-вывода
  • 11.2. Прямой доступ к памяти
  • 9.16. Принципы организации системы прерывания программ.
  • 76.2 Динамические структуры данных. Основные виды, способы построения.
  • 76.3 Системный анализ, определение и этапы. Сущность системного подхода и его применение при проектировании асоиу.
  • 2 Системный анализ. Определение и этапы.
  • 77.1 История развития и современное состояние в области микропроцессорных систем.
  • 77.2 Стандартные и структурированные типы данных.
  • 77.3 Математическое описание объектов управления. Цель и задача управления. Принцип отрицательной обратной связи.
  • 2.1. Математические методы построения оптимальных и адаптивных систем управления
  • 2.1.1. Математическое описание объектов управления
  • 2.1.2. Цель и задача управления
  • 2.1.3. Задача оптимального управления и критерии качества
  • 78.1 (Он же 80.1) Организация микроЭвм на базе микропрограммируемого микропроцессорного комплекта, типовые циклы функционирования.
  • 78.2 Жизненный цикл программных средств. Этапы разработки программного обеспечения.
  • Программное обеспечение
  • Прог. Комплекс Документы
  • 78. 3 Критерий качества. Методы решения задач оптимального управления
  • 79.2 Нисходящее проектирование алгоритмов на примере моделирования арифметических операций сложения, вычитания, с плавающей запятой.
  • 79.3 Понятия управляемости, достижимости и наблюдаемости динамических систем.
  • 80.1 Организация микроЭвм на базе микропрограммируемого микропроцессорного комплекта, типовые циклы функционирования.
  • 80.2 Восходящий метод проектирования алгоритмов и программ. Спроектировать схему универсального алгоритма перевода чисел из любой системы счисления в любую другую.
  • 80.3 Методология структурного проектирования sadt.
  • 76.3 Системный анализ, определение и этапы. Сущность системного подхода и его применение при проектировании асоиу.

    2 Системный анализ. Определение и этапы.

    Под системным анализом понимают всестороннее, систематизированное, то есть построенное на основе определенного набора правил, изучение сложного объекта в целом, вместе со всей совокупностью его сложных внешних и внутренних связей, проводимое для выяснения возможностей улучшения функционирования этого объекта.

    Системный анализ включает в себя 4 этапа:

    Первый этап: Постановка задачи.

    Следует выяснить само назначение проводимого исследования. Важно определить, что послужило причиной, вызвавшей решение о начале данного исследования: недовольство, неудовлетворенность существующей системой и т.д.

    Второй этап: Структуризация системы.

    Надо локализовать границы системы и определить ее внешнюю среду. Структуризация самой системы заключается в разбиении ее на подсистемы. Завершается этап структуризации определением всех существующих связей между нею и системами, выделенными во внешней среде. Тем самым для каждой из выделенных в процессе структуризации систем определяют ее входы и выходы.

    Третий этап: Построение модели.

    Модель - это приближенное, упрощенное представление процесса или объекта. Модели значительно облегчают понимание системы, позволяют проводить исследования в абстрактном плане, прогнозировать поведение системы в интересующих нас условиях, упрощать задачи, анализировать и синтезировать совершенно различные системы одними методами.

    Важные факторы должны быть отражены в модели с наибольшей полнотой и детализацией, их характеристики в модели должны совпадать с реальными с точностью, определяемой требованиями данного исследования, остальные, не существенные факторы могут быть либо отражены с меньшей точностью, либо вовсе отсутствовать.

    Существуют различные классификации видов моделей:

      статические;

      динамические;

      описательные (неформализованные);

      графические;

      масштабные;

      аналоговые;

      математические.

    Четвертый этап: Исследование модели.

    Основным назначением этого этапа является выяснение поведения моделируемого объекта или процесса в различных условиях, при различных состояниях внешней среды и самого объекта. Для этого варьируют параметры модели, характеризующие состояние объекта. Полученные результаты позволяют прогнозировать поведение исследуемого объекта в соответствующих условиях.

    Понятие и суть системного анализа

    Системный анализ – это методология решения крупных проблем с помощью теории систем.

    Системный анализ отличается от других методов следующим:

      ненаблюдаемостью объекта управления;

      постановка проблемы осуществляется в процессе решения задачи;

      выполняется количественный анализ альтернатив;

      проводится конструирование системы, решающей проблему.

    В системном анализе различают две системы

    • систему, решающую проблему.

    Проблема рассматривается как ситуация различия между необходимым желаемым и существую­щим выходами объекта.

    Задачи системного анализа –структуризовать систему и привести ее решение к методу математического моделирования.

    Система, решающая проблему, представляет единство трёх понятий:

    • наблюдатель;

      объект (это система–1).

    Под системным анализом будем понимать реализацию следующих этапов исследования сложной системы:

      Построение общих принципов поведения сложной системы;

      Формирование совокупности методов анализа;

      Решение проблемы сложности и неопределённости;

      Определение предельных характеристик системы;

      Автоматизация исследований.

    Алгоритм системного анализа включает в себя 3 макроэлемента:

      Постановка проблемы :

        Постановка задачи;

        Определение объекта исследования;

        Формирование целей;

        Задание критериев и ограничений;

      Разделение системы и внешней среды :

    2.1. Определение границ исследования системы;

        Первичная структуризация системы;

        Подразделение общей системы на систему и внешнюю среду;

        Выделение составных частей среды;

        Декомпозиция внешних воздействий на элементарные воздействия;

      Разработка математической модели :

      1. Формальное описание

        Параметризация модели

        Установление зависимости между параметрами

        Декомпозиция модели на составные части

        Уточнение первичной структуры

        Исследование модели

    СИСТЕМНЫЙ ПОДХОД

    http://ru.wikipedia.org/wiki/Системный_подход

    Системный подход - направление методологии исследования, в основе которого лежит рассмотрение объекта как целостного множества элементов в совокупности отношений и связей между ними, то есть рассмотрение объекта как системы.

    Говоря о системном подходе, можно говорить о некотором способе организации наших действий, таком, который охватывает любой род деятельности, выявляя закономерности и взаимосвязи с целью их более эффективного использования. При этом системный подход является не столько методом решения задач, сколько методом постановки задач. Как говорится, «Правильно заданный вопрос - половина ответа». Это качественно более высокий, нежели просто предметный, способ познания.

    Основные принципы системного подхода (системного анализа):

    Целостность, позволяющая рассматривать одновременно систему как единое целое и в то же время как подсистему для вышестоящих уровней.

    Иерархичность строения, т.е. наличие множества (по крайней мере, двух) элементов, расположенных на основе подчинения элементов низшего уровня - элементам высшего уровня. Реализация этого принципа хорошо видна на примере любой конкретной организации. Как известно, любая организация представляет собой взаимодействие двух подсистем: управляющей и управляемой. Одна подчиняется другой.

    Структуризация, позволяющая анализировать элементы системы и их взаимосвязи в рамках конкретной организационной структуры. Как правило, процесс функционирования системы обусловлен не столько свойствами ее отдельных элементов, сколько свойствами самой структуры.

    Множественность, позволяющая использовать множество кибернетических, экономических и математических моделей для описания отдельных элементов и системы в целом.

    Основные определения системного подхода

    Система- совокупность элементов и связей между ними. Структура - устойчивая картина взаимоотношений между элементами (картина связей и их стабильностей). Процесс - динамическое изменение системы во времени. Функция - процесс, происходящий внутри системы и имеющий определённый результат. Состояние - положение системы относительно других её положений.

    Основные допущения системного подхода

      В мире существуют системы

      Системное описание истинно

      Системы взаимодействуют друг с другом, а, следовательно, всё в этом мире взаимосвязано

    Аспекты системного подхода

    Системный подход - это подход, при котором любая система (объект) рассматривается как совокупность взаимосвязанных элементов (компонентов), имеющая выход (цель), вход (ресурсы), связь с внешней средой, обратную связь. Это наиболее сложный подход. Системный подход представляет собой форму приложения теории познания и диалектики к исследованию процессов, происходящих в природе, обществе, мышлении. Его сущность состоит в реализации требований общей теории систем, согласно которой каждый объект в процессе его исследования должен рассматриваться как большая и сложная система и, одновременно, как элемент более общей системы.

    Развернутое определение системного подхода включает также обязательность изучения и практического использования следующих восьми его аспектов:

      системно-элементного или системно-комплексного, состоящего в выявлении элементов, составляющих данную систему. Во всех социальных системах можно обнаружить вещные компоненты (средства производства и предметы потребления), процессы (экономические, социальные, политические, духовные и т.д.) и идеи, научно-осознанные интересы людей и их общностей;

      системно-структурного, заключающегося в выяснении внутренних связей и зависимостей между элементами данной системы и позволяющего получить представление о внутренней организации (строении) исследуемого объекта;

      системно-функционального, предполагающего выявление функций, для выполнения которых созданы и существуют соответствующие объекты;

      системно-целевого, означающего необходимость научного определения целей исследования, их взаимной увязки между собой;

      системно-ресурсного, заключающегося в тщательном выявлении ресурсов, требующихся для решения той или иной проблемы;

      системно-интеграционного, состоящего в определении совокупности качественных свойств системы, обеспечивающих ее целостность и особенность;

      системно-коммуникационного, означающего необходимость выявления внешних связей данного объекта с другими, то есть, его связей с окружающей средой;

      системно-исторического, позволяющего выяснить условия во времени возникновения исследуемого объекта, пройденные им этапы, современное состояние, а также возможные перспективы развития.

    Практически все современные науки построены по системному принципу.

    http://filosof.historic.ru/enc/item/f00/s10/a001030.shtml

    Системный подход - методологическое направление в науке, осн. задача к-рого состоит в разработке методов исследования и конструирования сложноорганизованных объектов - систем разных типов и классов. С. п. представляет собой спредер ленный этап в развитии методов познания, методов исследовательской и конструкторской деятельности, способов описания и объяснения природы анализируемых или искусственно создаваемых объектов. Исторически С. п. приходит на смену широко распространенным в 17-19 вв. кок* цепциям механицизма и по своим задачам противостоит этим концепциям. Наиболее широкое применение методы С. п. находят при исследовании сложных развивающихся объектов - мшмгоуровневых, иерархических, как правило, самоорганизующихся биологических, психологических, социалыных и т. д. систем, больших техничегских систем, систем «человек-машина» и т. д. Теоретической базой для разработки таких методов является диалектико-материалистический принцип системности. Маркс и Ленин дали глубокий анализ сложнейшего развив Бающегося объекта - системы экономических отношений капиталистиче-; ского об-ва - и изложили ряд принципов методологии системного исследования. К числу важнейших задач С. п. относятся: 1) разработка средств представления исследуемых и конструируемых объектов как систем; 2) построение обобщенных моделей систеэ мы, моделей разных классов и специфических свойств систем; 3) исследование структуры теорий систем и различных системных концепций и разработок. В системном исследова-. нии анализируемый объект рассматривается как определенное множество элементов, взаимосвязь к-рых обусловливает целостные свойства этого множества. Осн. акцент делается на выявлении многообразия связей и отношений, имеющих место как внутри исследуемого объекта, так и в его взаимоотношениях о внешним окружением, средой. Свойства объекта как целостной системы определяются не только и не столько суммированием свойств его отдельных элементов, сколько свойствами его структуры, особыми системообразующими, инте-; гративными связями рассматриваемого объекта. Для понимания поведения систем, прежде всего целенаправленного, необходимо выявить реализуемые данной системой процессы управления - формы передачи информации от одних подсистем к др. и способы воздействия одних частей системы на др., координацию низших уровней системы со стороны элементов ее высшего уровня, управления, влияние на последние всех остальных подсистем. Существенное значение в С. п. придается выявлению вероятностного характера поведения исследуемых объектов. Важной особенностью С. п. является то, что не только объект, но и сам процесс исследования выступает как сложная система, задача к-рой, в частности, состоит в соединении в единое целое различных моделей объекта. Системные объекты, наконец, как правило, не безразличны к процессу их исследования и во мн. случаях могут оказывать существенное воздействие на него. В условиях развертывания научно-технической революции происходит дальнейшее уточнение содержания С. п. - детальное раскрытие его философских оснований, разработка логических и методе^ логических принципов, дальнейший прогресс в построении общей теории систем. С. п. является теоретической и методологической основой системного анализа.